Part Number Hot Search : 
BH7272KV CAT521WI DPO2004B PE8210 DRC4143T TD6304 TIC108M AD8130
Product Description
Full Text Search
 

To Download SGB15N120 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 1 mar-00 fast s-igbt in npt-technology g c e ? 40% lower e off compared to previous generation ? short circuit withstand time ? 10 s ? designed for: - motor controls - inverter - smps ? npt-technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability type v ce i c e off t j package ordering code sgp15n120 1200v 15a 1.5mj 150 c to-220ab q67040-s4274 SGB15N120 to-263ab(d2pak) q67040-s4275 sgw15n120 to-247ac q67040-s4276 maximum ratings parameter symbol value unit collector-emitter voltage v ce 1200 v dc collector current t c = 25 c t c = 100 c i c 30 15 pulsed collector current, t p limited by t jmax i cpuls 52 turn off safe operating area v ce 1200v, t j 150 c - 52 a gate-emitter voltage v ge 20 v avalanche energy, single pulse i c = 15a, v cc = 50v, r ge = 25 ? , start at t j = 25 c e as 85 mj short circuit withstand time 1) v ge = 15v, 100v v cc 1200v, t j 150 c t sc 10 s power dissipation t c = 25 c p tot 198 w operating junction and storage temperature t j , t stg -55...+150 soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 c 1) allowed number of short circuits: <1000; time between short circuits: >1s.
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 2 mar-00 thermal resistance parameter symbol conditions max. value unit characteristic igbt thermal resistance, junction ? case r thjc 0.63 thermal resistance, junction ? ambient r thja to-220ab to-247ac 62 40 smd version, device on pcb 1) r thja to-263ab(d2pak) 40 k/w electrical characteristic, at t j = 25 c, unless otherwise specified value parameter symbol conditions min. typ. max. unit static characteristic collector-emitter breakdown voltage v (br)ces v ge =0v, i c =1000 a 1200 - - collector-emitter saturation voltage v ce(sat) v ge = 15v, i c =15a t j =25 c t j =150 c 2.5 - 3.1 3.7 3.6 4.3 gate-emitter threshold voltage v ge(th) i c =600 a, v ce = v ge 345 v zero gate voltage collector current i ces v ce =1200v,v ge =0v t j =25 c t j =150 c - - - - 200 800 a gate-emitter leakage current i ges v ce =1200v, v ge =0v - - 100 na transconductance g fs v ce =20v, i c =15a 11 - s dynamic characteristic input capacitance c iss - 1290 1550 output capacitance c oss - 155 185 reverse transfer capacitance c rss v ce =25v, v ge =0v, f =1mhz - 90 110 pf gate charge q gate v cc =960v, i c =15a v ge =15v - 130 175 nc internal emitter inductance measured 5mm (0.197 in.) from case l e to-220ab to-247ac -7 13 -nh short circuit collector current 2) i c(sc) v ge =15v, t sc 5 s 100v v cc 1200v, t j 150 c - 145 - a 1) device on 50mm*50mm*1.5mm epoxy pcb fr4 with 6cm 2 (one layer, 70 m thick) copper area for collector connection. pcb is vertical without blown air. 2) allowed number of short circuits: <1000; time between short circuits: >1s.
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 3 mar-00 switching characteristic, inductive load, at t j =25 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -1824 rise time t r -2330 turn-off delay time t d(off) - 580 750 fall time t f -2229 ns turn-on energy e on -1.11.5 turn-off energy e off -0.81.1 total switching energy e ts t j =25 c, v cc =800v, i c =15a, v ge =15v/0v, r g =33 ? , energy losses include ?tail? and diode reverse recovery. -1.92.6 mj switching characteristic, inductive load, at t j =150 c value parameter symbol conditions min. typ. max. unit igbt characteristic turn-on delay time t d(on) -3846 rise time t r -3036 turn-off delay time t d(off) - 652 780 fall time t f -3137 ns turn-on energy e on -1.92.3 turn-off energy e off -1.52.0 total switching energy e ts t j =150 c v cc =800v, i c =15a, v ge =15v/0v, r g =33 ? energy losses include ?tail? and diode reverse recovery. -3.44.3 mj
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 4 mar-00 i c , collector current 10hz 100hz 1khz 10khz 100khz 0a 10a 20a 30a 40a 50a 60a 70 a t c =110c t c =80c i c , collector current 1v 10v 100v 1000v 0.1a 1a 10a 100a dc 1ms 200 s 50 s 15 s t p =2 s f , switching frequency v ce , collector - emitter voltage figure 1. collector current as a function of switching frequency ( t j 150 c, d = 0.5, v ce = 800v, v ge = +15v/0v, r g = 33 ? ) figure 2. safe operating area ( d = 0, t c = 25 c, t j 150 c) p tot , power dissipation 25c 50c 75c 100c 125c 0w 25w 50w 75w 100w 125w 150w 175w 200w i c , collector current 25c 50c 75c 100c 125c 0a 5a 10a 15a 20a 25a 30a 35a t c , case temperature t c , case temperature figure 3. power dissipation as a function of case temperature ( t j 150 c) figure 4. collector current as a function of case temperature ( v ge 15v, t j 150 c) i c i c
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 5 mar-00 i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 5 0a 15v 13v 11v 9v 7v v ge =17v i c , collector current 0v 1v 2v 3v 4v 5v 6v 7v 0a 10a 20a 30a 40a 5 0a 15v 13v 11v 9v 7v v ge =17v v ce , collector - emitter voltage v ce , collector - emitter voltage figure 5. typical output characteristics ( t j = 25 c) figure 6. typical output characteristics ( t j = 150 c) i c , collector current 3v 5v 7v 9v 11 v 0a 10a 20a 30a 40a 50 a t j =-40c t j =+150c t j =+25c v ce(sat) , collector - emitter saturation voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v i c =30a i c =15a i c =7.5a v ge , gate - emitter voltage t j , junction temperature figure 7. typical transfer characteristics ( v ce = 20v) figure 8. typical collector-emitter saturation voltage as a function of junction temperature ( v ge = 15v)
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 6 mar-00 t , switching times 0a 10a 20a 30a 40a 10ns 100ns 1 000ns t r t d(on) t f t d(off) t , switching times 0 ? 25 ? 50 ? 10ns 100ns 1000ns t r t d(on) t f t d(off) i c , collector current r g , gate resistor figure 9. typical switching times as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 3 3 ? ) figure 10. typical switching times as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 15a) t , switching times -50c 0c 50c 100c 150c 10ns 100ns 1000ns t r t d(on) t f t d(off) v ge(th) , gate - emitter threshold voltage -50c 0c 50c 100c 150c 0v 1v 2v 3v 4v 5v 6v typ. min. max. t j , junction temperature t j , junction temperature figure 11. typical switching times as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 15a, r g = 3 3 ? ) figure 12. gate-emitter threshold voltage as a function of junction temperature ( i c = 0.3ma)
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 7 mar-00 e , switching energy losses 0a 10a 20a 30a 40a 50 a 0mj 2mj 4mj 6mj 8mj 10mj 12mj 14mj e on * e off e ts * e , switching energy losses 0 ? 25 ? 50 ? 75 ? 0mj 1mj 2mj 3mj 4mj 5mj e ts * e on * e off i c , collector current r g , gate resistor figure 13. typical switching energy losses as a function of collector current (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, r g = 3 3 ? ) figure 14. typical switching energy losses as a function of gate resistor (inductive load, t j = 150 c, v ce = 800v, v ge = +15v/0v, i c = 15a) e , switching energy losses -50c 0c 50c 100c 150c 0mj 1mj 2mj 3mj 4mj e ts * e on * e off z thjc , transient thermal impedance 1s 10s 100s 1ms 10ms 100ms 1 s 10 -3 k/w 10 -2 k/w 10 -1 k/w 0.01 0.02 0.05 0.1 0.2 single pulse d =0.5 t j , junction temperature t p , pulse width figure 15. typical switching energy losses as a function of junction temperature (inductive load, v ce = 800v, v ge = +15v/0v, i c = 15a, r g = 3 3 ? ) figure 16. igbt transient thermal impedance as a function of pulse width ( d = t p / t ) *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. *) e on and e ts include losses due to diode recovery. c 1 = r 1 r 1 r 2 c 2 = r 2 r ,(k/w) , (s) = 0.09751 0.67774 0.29508 0.11191 0.13241 0.00656 0.10485 0.00069
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 8 mar-00 v ge , gate - emitter voltage 0nc 50nc 100nc 150nc 0v 5v 10v 15v 20v u ce =960v c , capacitance 0v 10v 20v 30v 100pf 1nf c rss c oss c iss q ge , gate charge v ce , collector - emitter voltage figure 17. typical gate charge ( i c = 15a) figure 18. typical capacitance as a function of collector-emitter voltage ( v ge = 0v, f = 1mhz) t sc , short circuit withstand time 10v 11v 12v 13v 14v 15v 0 s 10 s 20 s 30 i c(sc) , short circuit collector current 10v 12v 14v 16v 18v 20v 0a 50a 100a 150a 200a 250a 300a v ge , gate - emitter voltage v ge , gate - emitter voltage figure 19. short circuit withstand time as a function of gate-emitter voltage ( v ce = 1200v, start at t j = 25 c) figure 20. typical short circuit collector current as a function of gate-emitter voltage (100v v ce 1200v, t c = 25 c, t j 150 c)
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 9 mar-00 dimensions symbol [mm] [inch] min max min max a 9.70 10.30 0.3819 0.4055 b 14.88 15.95 0.5858 0.6280 c 0.65 0.86 0.0256 0.0339 d 3.55 3.89 0.1398 0.1531 e 2.60 3.00 0.1024 0.1181 f 6.00 6.80 0.2362 0.2677 g 13.00 14.00 0.5118 0.5512 h 4.35 4.75 0.1713 0.1870 k 0.38 0.65 0.0150 0.0256 l 0.95 1.32 0.0374 0.0520 m 2.54 typ. 0.1 typ. n 4.30 4.50 0.1693 0.1772 p 1.17 1.40 0.0461 0.0551 t 2.30 2.72 0.0906 0.1071 to-220ab dimensions symbol [mm] [inch] min max min max a 9.80 10.20 0.3858 0.4016 b 0.70 1.30 0.0276 0.0512 c 1.00 1.60 0.0394 0.0630 d 1.03 1.07 0.0406 0.0421 e 2.54 typ. 0.1 typ. f 0.65 0.85 0.0256 0.0335 g 5.08 typ. 0.2 typ. h 4.30 4.50 0.1693 0.1772 k 1.17 1.37 0.0461 0.0539 l 9.05 9.45 0.3563 0.3720 m 2.30 2.50 0.0906 0.0984 n 15 typ. 0.5906 typ. p 0.00 0.20 0.0000 0.0079 q 4.20 5.20 0.1654 0.2047 r 8 max 8 max s 2.40 3.00 0.0945 0.1181 t 0.40 0.60 0.0157 0.0236 u 10.80 0.4252 v 1.15 0.0453 w 6.23 0.2453 x 4.60 0.1811 y 9.40 0.3701 to-263ab (d 2 pak) z 16.15 0.6358
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 10 mar-00 dimensions symbol [mm] [inch] min max min max a 4.78 5.28 0.1882 0.2079 b 2.29 2.51 0.0902 0.0988 c 1.78 2.29 0.0701 0.0902 d 1.09 1.32 0.0429 0.0520 e 1.73 2.06 0.0681 0.0811 f 2.67 3.18 0.1051 0.1252 g 0.76 max 0.0299 max h 20.80 21.16 0.8189 0.8331 k 15.65 16.15 0.6161 0.6358 l 5.21 5.72 0.2051 0.2252 m 19.81 20.68 0.7799 0.8142 n 3.560 4.930 0.1402 0.1941 ? p 3.61 0.1421 q 6.12 6.22 0.2409 0.2449 to-247ac
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 11 mar-00 figure a. definition of switching times i rrm 90% i rrm 10% i rrm di /dt f t rr i f i,v t q s q f t s t f v r di /dt rr q=q q rr s f + t=t t rr s f + figure c. definition of diodes switching characteristics p(t) 12 n t(t) j figure d. thermal equivalent circuit figure b. definition of switching losses
preliminary sgw15n120 sgp15n120, SGB15N120 power semiconductors 12 mar-00 published by infineon technologies ag i gr ., bereich kommunikation st.-martin-strasse 53, d-81541 mnchen ? infineon technologies ag 1999 all rights reserved. attention please! the information herein is given to describe certain components and shall not be considered as warranted characteristics. terms of delivery and rights to technical change reserved. we hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. infineon technologies is an approved cecc manufacturer. information for further information on technology, delivery terms and conditions and prices please contact your nearest infineon technologies office in germany or our infineon technologies representatives worldwide (see address list). warnings due to technical requirements components may contain dangerous substances. for information on the types in question please contact your nearest infineon technologies office. infineon technologies components may only be used in life-support devices or systems with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


▲Up To Search▲   

 
Price & Availability of SGB15N120

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X